Reactive (dissociative) diatom–solid surface collision: A quantum mechanical approach

M. Baer
Applied Mathematics, Soreq Nuclear Research Centre, Yavne 70600, Israel
(Received 31 January 1984; accepted 6 June 1984)

In this work a quantum mechanical approach to the study of reactive diatom (stationary) surface collisions is presented. Following the general theory the infinite order sudden approximation (IOSA) is introduced and the corresponding S matrix elements derived. The case of noncorrugated surfaces is treated in detail and a new quasiselection rule is found which governs the reactive process.

I. INTRODUCTION

The theoretical treatment of a reactive collision between an atom and a diatomic molecule constitutes one of the most important subjects in the field of theoretical chemistry. Although in the last few years progress has somewhat slowed down—the transition to three dimensions was found to be more complicated than anticipated—nevertheless significant contributions were made, particularly in employing approximate treatments. One of the approximations for treating quantum mechanical three-dimensional systems is the infinite order sudden approximation (IOSA). It was found to yield (except for the low tunneling region) total cross sections which fit both exact quantum mechanical and coupled states (CS) results, as well as exact classical results. With more detailed information, such as (vibrational) state-to-state differential and integral cross sections, good agreement is obtained between the IOSA and the CS results. The system is a hydrogen molecule and a diatomic molecule, as well as for the $F + H_2$ system, but rather poor agreement with similar classical results is expected. More detailed information is needed, for instance, the distorted wave Born approximation (DWBA) which seems to be relevant, at most, for the low-energy region.

The treatment of reactive collisions was extended to the molecule–solid surface case in the middle of the seventies by Wolken and co-workers and by Gelb and Cardillo. More recent studies of this kind were performed by Tully. In all these treatments the classical trajectory method was employed and except for the study of Tully the solid surface was assumed to be stationary.

The molecule solid surface interaction was also treated within quantum mechanics, but only for nonreactive collisions. The pioneering research on this subject was done by Wolken already in 1973, but intensive studies started to appear in the literature only five to seven years later. It was soon found that exact close coupling calculations can be carried out only for a limited number of interesting cases. In order to obtain results for realistic systems which are also measurable in the laboratory, approximations have to be incorporated. So far the most favorable approximation is the IOSA which was introduced by Gerber et al. and Adams in 1980 and since then has been used with major success.

In this work a quantum mechanical approach to treating reactive collisions between a molecule and a solid (stationary) surface is presented. However, the main emphasis is on the application of the IOSA for this case. Consequently the paper is arranged in the following way. In the next section the general theory for treating a reactive (or dissociative) collision between a diatomic molecule and a solid (stationary) surface is discussed. In Sec. III the IOSA for this case is presented. The quasicollinear case and the general case for an exchange collision with a noncorrugated surface are analyzed in Sec. IV and in Sec. V the main conclusions are discussed.

II. THE GENERAL CASE

In treating reactive systems one has to consider at least two arrangement channels: the initial one which is the reagents channel and the final one which is the products channel. In the atom–molecule case the initial and the final channels are similar in the sense that in both arrangements we have an atom and a diatomic molecule. Consequently, one would expect that the same kind of coordinates would apply in both cases, namely three polar coordinates r for the interatomic vibrational motion and three polar coordinates $R\theta\phi$ for the translational motion. In the reactive molecule–surface system a different situation is encountered; here the initial channel is a diatomic molecule and a surface and the final arrangement channel is a free atom and an atom bound to an (infinite) surface.

If S stands for "surface," then the reactions to be treated are of the kind

$$AB + S \rightarrow \begin{cases} AS + B \\ BS + A \end{cases}$$

where A and B are atoms.

The fact that as reagents A and B form a molecule and that as products they are unbound results in two different kinds of coordinates. (i) The reagents channel is best described by the three polar coordinates $r\theta\phi$ for the interatomic vibrational motion and the three Cartesian coordinates X_2, Y_2, Z_2 for the translational motion. (Since the...
system, due to the existence of the infinite surface, has lost its spherical symmetry, the spherical coordinates for the translational motion are inappropriate.) (ii) The products channel seems to be best described in terms of two sets of Cartesian coordinates: the coordinates \((x_\lambda, y_\lambda, z_\lambda)\) of the bound atom and the coordinates \((x_\nu, y_\nu, z_\nu)\) of the unbound atom. The indices \(\lambda\) and \(\nu\) stand for the two arrangement channels, respectively. The various coordinates are shown in Fig. 1.

The Schrödinger equation for the entrance channel is

\[
[T_{R\lambda} + T_{\nu\lambda} + V(x_\lambda, y_\lambda, z_\lambda; r, \theta, \phi)] \psi_\lambda = E \psi_\lambda, \tag{2.2}
\]

where

\[
T_{R\lambda} = -\frac{\hbar^2}{2\mu_{R\lambda}} \left(\frac{\partial^2}{\partial x_\lambda^2} + \frac{\partial^2}{\partial y_\lambda^2} + \frac{\partial^2}{\partial z_\lambda^2} \right), \tag{2.3}\n\]

\[
T_{\nu\lambda} = -\frac{\hbar^2}{2\mu_{\nu\lambda}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) \right. \\
\left. + \frac{1}{r^2 \sin^2 \theta} \left(\sin \theta \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial \theta^2} \right) \right], \tag{2.4}\n\]

and

\[
\psi_\lambda = \psi_\lambda(x_\lambda, y_\lambda, z_\lambda; r, \theta, \phi).
\tag{2.5}\n\]

Here \(\mu_{R\lambda}\) is the reduced mass of the molecule with respect to the surface, namely:

\[
\mu_{R\lambda} = m_A + m_B \tag{2.6}\n\]

and \(\mu_{\nu\lambda}\) is the reduced mass of the molecule, namely:

\[
\mu_{\nu\lambda} = \frac{m_A m_B}{m_A + m_B}. \tag{2.7}\n\]

In order to simplify the treatment we introduce the corresponding mass scaled coordinates:

\[
R'_\lambda = a_\lambda^{-1} R_\lambda; \quad r'_\lambda = a_\lambda r_\lambda; \quad a_\lambda = \left(\frac{m_A m_B}{(m_A + m_B)^2} \right)^{1/4}. \tag{2.8}\n\]

Consequently \(T_{R\lambda}\) and \(T_{\nu\lambda}\) become

\[
T_{R\lambda} = -\frac{\hbar^2}{2\mu_{R\lambda}} \left(\frac{\partial^2}{\partial x'_\lambda^2} + \frac{\partial^2}{\partial y'_\lambda^2} + \frac{\partial^2}{\partial z'_\lambda^2} \right), \tag{2.3'}\n\]

\[
T_{\nu\lambda} = -\frac{\hbar^2}{2\mu_{\nu\lambda}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) \right. \\
\left. + \frac{1}{r^2 \sin^2 \theta} \left(\sin \theta \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial \theta^2} \right) \right], \tag{2.4'}\n\]

where we dropped the primes from \(X_\lambda, Y_\lambda, Z_\lambda\) and \(r, \theta, \phi\) is the mass of the system, i.e.,

\[
\mu = (m_A m_B)^{1/2}. \tag{2.9}\n\]

The Schrödinger equation for the exit channel (in terms of the corresponding mass scaled coordinates) is

\[
[T_{R\nu} + T_{\nu\nu} + V(x_\nu, y_\nu, z_\nu; r_\nu, \theta, \phi)] \psi_\nu = E \psi_\nu, \tag{2.10}\n\]

where

\[
T_{R\nu} = -\frac{\hbar^2}{2\mu_{R\nu}} \left(\frac{\partial^2}{\partial x'_\nu^2} + \frac{\partial^2}{\partial y'_\nu^2} + \frac{\partial^2}{\partial z'_\nu^2} \right), \tag{2.11}\n\]

\[
T_{\nu\nu} = -\frac{\hbar^2}{2\mu_{\nu\nu}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) \right. \\
\left. + \frac{1}{r^2 \sin^2 \theta} \left(\sin \theta \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial \theta^2} \right) \right], \tag{2.12}\n\]

The transformation from one system of coordinates to the other is given by

\[
R_\nu = R_\lambda \cos \beta + r_\lambda \sin \beta, \tag{2.13}\n\]

\[
r_\nu = R_\lambda \sin \beta - r_\lambda \cos \beta,
\]

where

\[
\cos \beta = \left(\frac{m_A}{m_A + m_B} \right)^{1/2}; \quad \sin \beta = \left(\frac{m_B}{m_A + m_B} \right)^{1/2}. \tag{2.14}\n\]

Here we assume that the final bound atom is B and the free atom is A.

From Eq. (2.13) the following explicit relations can be obtained:

\[
X_\nu = X_\lambda \cos \beta + r_\lambda \sin \theta \cos \phi \sin \beta, \tag{2.15a}\n\]

\[
Y_\nu = X_\lambda \cos \beta + r_\lambda \sin \theta \sin \phi \sin \beta, \tag{2.15b}\n\]

\[
Z_\nu = Z_\lambda \cos \beta + r_\lambda \cos \theta \sin \beta, \tag{2.15c}\n\]

\[
x = X_\lambda \sin \beta - r_\lambda \sin \theta \cos \phi \cos \beta, \tag{2.15d}\n\]

\[
y = Y_\lambda \sin \beta - r_\lambda \sin \theta \sin \phi \cos \beta, \tag{2.15e}\n\]

\[
z = Z_\lambda \sin \beta - r_\lambda \cos \theta \cos \beta. \tag{2.15f}\n\]

The index \(\nu\) has been dropped from \(x_\nu, y_\nu,\) and \(z_\nu\) (no confusion results).

For what follows we assume that the surface is a rectangular lattice with dimensions \(e_x\) and \(e_y\) and an area \(A\). The wave function in the \(\lambda\) arrangement is expanded in terms of the surface diffraction states and molecular rotational states:

\[
\psi_\lambda(R_\lambda, r_\lambda) = \frac{1}{\sqrt{A}} \sum_{q=0}^{n} \sum_{j=0}^{m} \frac{1}{r} \exp \left[i (G_{q,y} + K_{j,x} + 1) \right] \nonumber \times y_{jm} (\theta, \phi) X_{q,y}^{(s)} (r_\lambda, Z_\lambda), \tag{2.16}\n\]

where \(\psi_\nu(\theta, \phi)\) are the free rotor states of the diatomic molecule and \(G_{q,y}, K_{j,x}\) and \(r_\lambda, Z_\lambda\) are vectors parallel to the surface.

\[
\psi_\lambda (X_\lambda, Y_\lambda, 0), \tag{2.17a}\n\]
\[K = (k_{1x}, k_{2y}, 0), \quad (2.17b) \]

\[G_{\alpha \beta} = \left(\frac{2\pi}{\varepsilon_a}, \frac{2\pi}{\varepsilon_p}, p_a, 0 \right), \quad (2.17c) \]

Here \(K \) is the projection of the wave vector \(k = (k_{1x}, k_{2y}, k_{3z}) \) on the surface and \(G_{\alpha \beta} \) are the reciprocal space vectors. The appearance of the \(\alpha \) in the argument of the exponential in Eq. (2.16) is due to the fact that \(p \) is expressed in mass scaled coordinates. Substituting Eq. (2.16) in Eq. (2.2), multiplying through by \(-iG_{\alpha \beta} \), \(+ K \), \(\alpha \), \(\beta \), \(= \alpha x, \beta y, \), and integrating over \(X_1, Y_2, \theta, \) and \(\phi \), one obtains the following coupled system of differential equations for \(X_1, Y_2, \theta, \phi \):

\[- \frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial Z_1^2} + \frac{\partial^2}{\partial r^2} - j(j + 1) \right) + k_{\alpha \beta} \xi_{\alpha \beta}^{(i)}(\theta, \phi) \chi_{\alpha \beta}^{(i)}(\theta, \phi) \equiv 0, \quad (2.18)\]

where

\[k_{\alpha \beta}^{(i)} = \frac{2\mu \hbar^2}{\varepsilon_a} \left[\left(\frac{2\pi}{\varepsilon_a} q_1 + k_{2y} \right)^2 \right] \right]^{1/2} \quad (2.19)\]

and

\[\delta_{\alpha \beta}^{(i)} = \int_0^{2\pi} \int_0^{\pi} \int_0^{2\pi} \int_0^{\pi} dX_1 dY_1 d(\cos \theta) d\phi \]

\[\exp \left[- i a_1 G_{\alpha \beta} (\theta, \phi) V(X_1, Y_1, Z_1, r, \theta, \phi) \right] \]

\[\times y_{\beta}^{(i)}(\theta, \phi) \exp \left[i a_1 G_{\alpha \beta} (\theta, \phi) \right] \quad (2.20)\]

Here \(\epsilon_{\alpha \beta} \) is an eigenvalue of the equation

\[- \frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial Z_1^2} + \frac{\partial^2}{\partial r^2} + \right) + \delta_{\alpha \beta}(x, y, z) \quad (2.25)\]

The potential \(\phi(x, y, z) \) is defined as

\[\lim_{z \rightarrow \infty} V(X_1, Y_1, Z_1, x, y, z) = \phi(x, y, z), \quad (2.26)\]

where \(V(X_1, Y_1, Z_1, x, y, z) \) is the potential of the system.

The coordinate \(z \) is a fixed value of \(z \). [In case is it is taken to be equal to \(z \), Eq. (2.22) has to be modified accordingly.]

Finally, the potential \(U(X_1, Y_1, Z_1, x, y, z) \) is defined as

\[U(X_1, Y_1, Z_1, x, y, z) = V(X_1, Y_1, Z_1, x, y, z) - \phi(x, y, z). \quad (2.27)\]

In order to find the corresponding \(S \) matrix elements the two sets of coupled differential equations, i.e., Eqs. (2.18) and (2.22), each in the corresponding arrangement channel, are integrated to form all the independent solutions. These solutions are then used to construct the total wave function Here, as was done in other similar cases, the upper limits of the integrals over \(X_1 \) and \(Y_2 \) were changed due to the scaling.

The wave function in the \(\nu \) arrangement is expanded in terms of the surface diffraction states and the \((x, y) \) part of the bounded atom eigenstates:

\[\psi(R_1, r_1) = \frac{1}{\sqrt{A}} \sum_{\alpha, \beta} \sum_{\alpha, \beta} \exp \left[i G_{\alpha \beta} (\theta, \phi) \right] \]

\[+ K \alpha, \beta \xi_{\alpha \beta}(x, y) \chi_{\alpha \beta}^{(i)}(\theta, \phi) \quad (2.21)\]

where \(\xi_{\alpha \beta}(x, y) \) is the \((x, y) \) part of the bound atom eigenstate, \(G_{\alpha \beta} \), \(K \alpha, \beta \), and \(\xi_{\alpha \beta}^{(i)}(\theta, \phi) \) are the vectors defined similarly to \(G_{\alpha \beta}, K \alpha, \beta \), and \(\chi_{\alpha \beta}^{(i)}(\theta, \phi) \) are the coefficients that enter due to the scaling in the \(\nu \) arrangement:

\[R_1 = a_v R_1; \quad r_1 = a_v r_1; \quad \alpha_v = (m_b / m_a)^{1/4}. \quad (2.2')\]

The corresponding set of coupled differential equations is

\[- \frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial Z_1^2} + \frac{\partial^2}{\partial r^2} + k_{\alpha \beta}^{(i)}(\theta, \phi) \right) \chi_{\alpha \beta}^{(i)}(\theta, \phi) \]

\[+ \sum_{q_1, p_1, \alpha', \beta'} \langle q_1, p_1, \alpha, \beta | U(q_1, p_1, \alpha', \beta') \rangle \chi_{\alpha', \beta'}^{(i)}(\theta, \phi) = 0, \quad (2.22)\]

where

\[k_{\alpha \beta}^{(i)}(\theta, \phi) = \left[\frac{2\mu \hbar^2}{\varepsilon_a} \left(\frac{2\pi}{\varepsilon_a} q_1 + k_{2y} \right)^2 \right]^{1/2} \quad (2.23)\]

and

\[\langle q_1, p_1, \alpha, \beta | U(q_1, p_1, \alpha', \beta') \rangle \chi_{\alpha', \beta'}^{(i)}(\theta, \phi) = 0. \quad (2.24)\]

which is continuous and has a continuous derivative over the entire space and also has the correct physical asymptotic form. In order to achieve this the solutions in the two arrangement channels have to be matched on a surface which separates the two channels. It seems that the best (matching) surface is the one described by the equation

\[r = r_0(\text{const}), \quad (2.28)\]

where for a given energy \(r_0 \) is large enough so that

\[\lim_{z \rightarrow \infty} \psi(R_1, r_1, Z_1, r, \theta, \phi) \approx 0. \quad (2.29)\]

III. THE INFINITE ORDER SUDDEN APPROXIMATION (IOSA) FOR THE REACTIVE MOLECULE-SURFACE SYSTEM

In collision processes between molecular species the number of degrees of freedom is usually large. The minimal number is six (for an atom–diatom case) and each additional atom adds three more degrees of freedom thus making the
treatment of any realistic system a formidable task. However, with many degrees of freedom, one is usually able to distinguish between fast varying and slow varying degrees of freedom. In case such a distinction can be made, a variety of approximations become apparent. The first to employ this idea successfully in atomic physics were Born and Oppenheimer22 who separated the treatment of the fast moving electrons from the slow moving nuclei, thus opening the field of atomic and molecular physics to theoretical investigations. Since then this idea was used under different names in various cases. In molecular scattering processes it goes under the name infinite order sudden approximation (IOSA).33 The IOSA was developed and then mainly applied for atom-molecule collisions, but was recently also extended to molecule-surface collisions.22,25-30

According to this approximation the translational coordinate R and eventually the vibrational coordinate r are the “fast” coordinates, whereas the “slow” ones are the angular coordinates. In nonreactive collisions one encounters, in the simple atom–diatom case, only one angular coordinate $\gamma = \cos^{-1}(\hat{R} \cdot \hat{r})$ because the other three can be eliminated by symmetry. In exchange collisions two angles are encountered, namely γ and an angle $\Delta = \cos^{-1}(\hat{R}_e \cdot \hat{R}_o)$ which is associated with transformation from the λ arrangement to the ν arrangement (\hat{R}_e and \hat{R}_o are the two corresponding translational unit vectors).

The study of the molecule surface interaction is much more complicated because, in general, no symmetry relations hold. Therefore none of the four coordinates (besides R and r, or to be more exact Z and r) can be eliminated, like in the previous case. Thus the IOSA has to be applied with respect to each of the four degrees of freedom in order to be able to reduce the problem to a tractable numerical one. The treatment of such a system becomes much more involved when the molecule is allowed to react with the surface. In such a case, as we have seen in the previous chapter, one encounters at least two arrangements, each characterized by six coordinates. The difficulty is not only in handling two arrangement channels instead of one, but also in guaranteeing that in the transformation from one arrangement to the other, the slow coordinates of the first arrangement will transform, independent of the fast coordinates, to the slow coordinates of the second arrangement.

In order to show how such a transformation can be constructed we consider first the atom–diatom case. In each arrangement one encounters four coordinates $(R_o, r_o, \gamma_o, \theta_o)$ where $\alpha = \lambda, \nu$, of which the two fast coordinates are R_o and r_o and the slow ones are γ_o and θ_o. (It has to be emphasized that in contrast to R_o, r_o, and γ_o, the angles θ_o and θ_a are relevant only for the transformation from one arrangement to the other. In fact only the difference between the two, namely $\Delta = \theta_o - \theta_a$, is of importance and it can be shown that $\Delta = |R_o, r_o, \gamma_o|$.)

In the general case the transformation from one arrangement to the other is performed on a surface which separates the two arrangements. Such a surface is obtained, for instance, from the relation

$$r_o = Br_o$$

which yields the equation of the surface1-3,34

$$R_o^2 \sin^2 \beta + r_o^2(\cos^2 \beta - B^2) - R_o \cos \gamma_o \sin 2\beta = 0,$$

where B is a given constant and

$$\cos \beta = \sqrt{\frac{m_B}{m_A + m_B(m_A + m_B)/m_C}},$$

$$\sin \beta = \sqrt{1 - \cos^2 \beta}. \tag{3.3}$$

Here m_A, m_B, and m_C are the masses of the three interacting atoms. It can be shown that on the surface the relation between the two sets of the slow coordinates is

$$\cos \gamma_o = \frac{\cos \gamma_o - (1 - B^2) \tan \eta \cot \beta}{B [1 + (1 - B^2) \tan^2 \eta]^{1/2}}, \tag{3.4}$$

and

$$\cos(\theta_o - \theta_a) = \cos \Delta = -\frac{\cos \beta + \cos \gamma_o \sin \beta \tan \eta}{[1 + (1 - B^2) \tan^2 \eta]^{1/2}}, \tag{3.5}$$

where

$$\tan \eta = \frac{\sin \beta}{B^2 - \cos^2 \beta} \left(1 - \cos \beta \cos \gamma_o + (B^2 - \sin^2 \gamma_o \cos^2 \beta)^{1/2} \right). \tag{3.6}$$

In the framework of the IOSA the surface given by Eq. (3.2) reduces to a straight line which goes through the origin and the relations (3.4)-(3.6) are all still valid.

In order to look for a separating surface like that in the molecule–solid surface case, we have to consider Eq. (2.13) as evaluated in Eqs. (2.15). The fast coordinates in the λ channel will be like in the atom–molecule case (but with the obvious changes), i.e., the translational coordinate Z_λ and the vibrational coordinate r. Consequently the slow coordinates are X_λ, Y_λ, θ, and ϕ. For the ν channel one obvious fast coordinate will be, like in all previous cases, the translational coordinate Z_ν. The best choice for the other fast coordinate is probably z which is the obvious choice for the collinear case (when $\theta = \phi = 0$). If Z_ν and z are the fast coordinates, then X_ν, Y_ν, x, and y are the corresponding slow coordinates. Therefore we have to guarantee that in transforming from the λ arrangement to the ν arrangement the four slow λ coordinates $(X_\lambda, Y_\lambda, \theta, \phi)$ will transform to the slow ν coordinates, i.e., (X_ν, Y_ν, x, y) independent of the fast coordinates in the two arrangements. It should be mentioned that making slow the horizontal coordinates X_λ, Y_λ, X_ν, and Y_ν in comparison with the normal coordinates Z_ν and Z_λ implies that the approaching and receding particles are moving in the vicinity of the normal to the surface.

At this stage we have to distinguish between two cases:

(i) $\theta = 0$.

We have [see Eq. (2.15)]

$$X_\nu = X_\lambda \cos \beta; \quad Y_\nu = Y_\lambda \cos \beta; \quad x = X_\lambda \sin \beta; \quad y = Y_\lambda \sin \beta,$$

$$X_\lambda = x \cos \beta; \quad Y_\lambda = y \cos \beta.$$

It can be seen that the slow coordinates will always transform to slow coordinates. The case $\theta = 0$ is an extended “collinear” case for the atom-surface case. Note that the collinear arrangement is encountered without making any addi-
tional requirements concerning \(X_\lambda\) and \(Y_\lambda\).

(ii) \(\theta \neq 0\).

In the general case the slow \(\rightarrow\) slow transformation can be obtained only along the surface

\[
r = \text{const} = r_0
\]

which becomes a straight line in the IOSA reduced space. Thus, the slow \(\rightarrow\) slow transformation is

\[
\begin{align*}
X_\nu &= X_\lambda \cos \beta + r_0 \sin \theta \cos \phi \sin \beta, \\
Y_\nu &= Y_\lambda \cos \beta + r_0 \sin \theta \sin \phi \sin \beta,
\end{align*}
\]

(3.9)

\[
x = X_\lambda \sin \beta - r_0 \sin \theta \cos \phi \cos \beta, \\
y = Y_\lambda \sin \beta - r_0 \sin \theta \sin \phi \cos \beta.
\]

The IOSA Schrödinger equation for the \(\lambda\) channel is [see Eq. (2.18)]:

\[
\left[-\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial Z_\lambda^2} + \frac{\partial^2}{\partial \varphi^2} \right) + V(Z_\lambda, r_0 X_\lambda, Y_\lambda, \theta, \phi) - \frac{\hbar^2}{2\mu} \sum_{\alpha} \right] \chi^{(2)}(Z_\lambda, r_0 X_\lambda, Y_\lambda, \theta, \phi) = 0.
\]

(3.10)

Here it is assumed that \(\vec{k}_{\lambda z}\) introduced in Eq. (2.19) fulfills the condition

\[
\vec{k}^2_{\lambda z} > G^2_{\lambda z, \rho \lambda} a^2_{\lambda z}
\]

(3.11)

so that [see Eq. (2.19)]

\[
\vec{k}^2_{\lambda z} = k^2_{\lambda z, \rho \lambda} - \frac{2\mu}{\hbar^2} E - (k^2_{\lambda z} + k^2_{\lambda z, \rho \lambda}) a^2_{\lambda z}.
\]

(3.12)

The rotational energy term \(j(j+1)\hbar^2/(2\mu r^2)\) is discarded by the same reasoning (or we may assume that the initial \(j\) is equal to zero). The corresponding IOSA Schrödinger equation for the \(\nu\) channel is [see Eq. (2.22)]

\[
\left[-\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial Z_\nu^2} + \frac{\partial^2}{\partial \varphi^2} \right) + V(Z_\nu, \omega; X_\nu, Y_\nu, x, y) - \frac{\hbar^2}{2\mu} \sum_{\alpha} \right] \chi^{(2)}(Z_\nu, \omega; X_\nu, Y_\nu, x, y) = 0,
\]

(3.13)

where [see Eq. (2.23)]

\[
\vec{k}^2_{\nu z} = k^2_{\nu z, \rho \lambda} - \frac{2\mu}{\hbar^2} E - (k^2_{\nu z} + k^2_{\nu z, \rho \lambda}) a^2_{\nu z}.
\]

(3.14)

Here, like in the \(\lambda\) channel, it is assumed that

\[
\vec{k}^2_{\nu z} > G^2_{\nu z, \rho \lambda} a^2_{\nu z}; \quad \vec{k}^2_{\nu z} > \frac{2\mu}{\hbar^2} \epsilon_{\alpha \beta}.
\]

(3.15)

Integration of Eqs. (3.10) and (3.13) and matching the solutions along a straight line in the interaction region as discussed earlier, leads to a reactive \(S\) matrix element of the type

\[
\langle q, p_{\nu}, \alpha \beta \eta_{\nu}, S | q_\lambda, p_\lambda, j m n_{\lambda} \rangle = \frac{1}{A} \int_0^{\gamma_{\nu}} \int_0^{\gamma_{\nu}} \int_{-1}^{1} \int_0^{2\pi} dX_\lambda dY_\lambda d(\cos \theta) d\phi
\]

\[
\times \xi_{\nu, \rho \lambda}(x, y) \exp \left[-i a_{\nu} (G_{\nu, \rho \lambda} + K_{\nu} + \rho_{\lambda} \| \rho_{\lambda} \rangle \right] S_{\lambda \nu}^{\nu_{\nu}}(X_\lambda, Y_\lambda, \theta, \phi) \exp \left[i a_{\nu} (G_{\nu, \rho \lambda} + K_{\nu} + \rho_{\lambda} \| \rho_{\lambda} \rangle \right] \psi_{\nu m}(\theta, \phi),
\]

(3.16)

where \(\Gamma\) is given in the form

\[
\Gamma = (G_{\nu, \rho \lambda} - G_{\nu, \rho \lambda} + K_{\nu} - K_{\nu} + \rho_{\lambda} \| \rho_{\lambda} \rangle \right]
\]

(3.17)

\[
- r_0 \sin \theta \tan \beta \langle G_{\nu, \rho \lambda} + K_{\nu} + \rho_{\lambda} \| \rho_{\lambda} \rangle \right].
\]

(3.21)

So far the value of \(K_{\nu}\) is undetermined. However, in order to obtain a Hermitian \(S\) matrix for the quasicollinear systems, the two \(\gamma\)'s appearing in Eqs. (3.10) and (3.13), namely \(\vec{k}_{\lambda z}\) and \(\vec{k}_{\nu z}\), have to be identical. Thus, employing Eqs. (3.12) and (3.14), we have that this requirement is fulfilled if

\[
K_{\nu} = K_{\lambda} \cos \beta
\]

(3.22)

Equation (3.21) simplifies significantly for the case \(\beta \rightarrow 0\), namely when the reacting atom (i.e., atom B) is much lighter than the dissociative atom. For this case Eq. (3.21) becomes

\[
\Gamma = (G_{\nu, \rho \lambda} - G_{\nu, \rho \lambda}),
\]

(3.23)

which is very similar to the inelastic result.

IV. SPECIAL CASES

A. The collinear case

The collinear case is of particular importance because it is the only case where the matching line does not have to be defined by \(r = r_0\), but can also be chosen as
where β is a given constant. This choice is used extensively in IOSA treatments for atom–molecule collisions and was found to yield reliable results.\(^{1,3,34}\)

In this case Eq. (3.10) reduces to

$$
\langle q_1, p_1, \alpha \beta \Gamma_n | S | q_2, p_2, n_2 \rangle = \frac{1}{A} \int_{0}^{\varphi_{\alpha}} \int_{0}^{\varphi_{\beta}} \int_{0}^{\Omega} d\chi d\gamma d\phi \hat{S}_{\alpha \beta}^{\Gamma_n}(\chi, \gamma, \phi) e^{i\hat{S}_{\alpha \beta}^{\Gamma_n}(\chi, \gamma, \phi)}. \tag{4.2}
$$

where Γ is given as

$$
\Gamma = (G_{\alpha \beta} - G_{\alpha \gamma} + K_{\alpha} - K_{\beta})p_{\alpha}, \tag{4.3}
$$

or if the relation in Eq. (3.22) is assumed:

$$
\Gamma = [G_{\alpha \beta} - G_{\alpha \gamma} + K_{\beta}(1 - \cos \beta)]p_{\alpha}. \tag{4.4}
$$

For the case $\beta = 0$, Eq. (4.4) reduces to Eq. (3.23).

B. The treatment for an uncorrugated surface

To treat the uncorrugated case one may assume that the quasicollinear S matrix elements $S_{\alpha \beta}^{\Gamma_n}$ are independent of x_β and y_β, and the angle ϕ can therefore be shifted in front of the corresponding integrals.

In this particular case we also have to refer to the horizontal basis set functions $\xi_{\alpha \beta}(x, y)$ in greater detail. Since the surface is flat the potential is not dependent on x and y (or on X_β and Y_β) and therefore $\xi_{\alpha \beta}(x, y)$ are no longer a discrete set of functions, but rather a continuous one. Consequently $\xi(x, y)$ satisfies the equation

$$
-\frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + a_{\gamma}^{-2} \Omega^2 \right) \xi(x, y) = 0, \tag{4.5}
$$

where Q_γ is the horizontal momentum associated with the bond particle. The solution of this equation is

$$
\xi(x, y) = (1/2\pi) \exp\left[i a_{\gamma}^{-1}(Q_\gamma \cdot r_\gamma) \right], \tag{4.6}
$$

where

$$
r_\gamma = (x, y). \tag{4.7}
$$

Due to this modification Eq. (3.16) becomes

$$
\langle q_1, p_1, n_1 | S | q_2, p_2, n_2 \rangle = \int_{-1}^{1} d(\cos \theta) S_{\alpha \beta}^{\Gamma_n}(\theta) W(\theta), \tag{4.8}
$$

where

$$
W(\theta) = \frac{1}{2\pi A} \int_{0}^{\varphi_{\alpha}} \int_{0}^{\varphi_{\beta}} \int_{0}^{\Omega} d\chi d\gamma d\phi \hat{S}_{\alpha \beta}^{\Gamma_n}(\chi, \gamma, \phi) e^{-i\theta}. \tag{4.9}
$$

Here

$$
\Gamma = a_{\beta}(G_{\alpha \beta} - G_{\alpha \gamma} + K_{\beta})p_{\alpha} - a_{\gamma}(G_{\alpha \beta} - G_{\alpha \gamma} + K_{\beta})p_{\alpha} - a_{\gamma}^{-1}Q_\gamma r_\gamma. \tag{4.10}
$$

Before continuing we have to elaborate on K_β and Q_γ, the horizontal linear moments of the free particle and of the bond particle, respectively. In order to derive them explicitly we have to differentiate Eqs. (3.9) with respect to time.

Thus

$$
\dot{p}_\gamma = \dot{p}_\alpha \cos \beta + r_0 \sin \beta (\cos \theta \dot{\theta} - \sin \theta \dot{\phi}), \tag{4.11a}
$$

$$
r_\gamma = p_\alpha \sin \beta - r_0 \cos \beta (\cos \theta \dot{\theta} - \sin \theta \dot{\phi}). \tag{4.11b}
$$

Here \dot{u} is a unit vector along the projected axis of the molecule and $\dot{\tau}$ is a unit vector perpendicular to it:

$$
\dot{u} = \cos \phi \dot{u}_x + \sin \phi \dot{u}_y, \tag{4.12a}
$$

$$
\dot{\tau} = -\sin \phi \dot{u}_x + \cos \phi \dot{u}_y. \tag{4.12b}
$$

Since

$$
\frac{1}{2\pi} K_\beta = (m_\alpha + m_\beta) a_{\alpha} \dot{p}_\alpha, \tag{4.13a}
$$

$$
\frac{1}{2\pi} K_\gamma = m_\alpha a_{\alpha} \dot{p}_\gamma, \tag{4.13b}
$$

$$
\frac{1}{2\pi} Q_\gamma = m_\alpha a_{\alpha}^{-1} r_\gamma, \tag{4.13c}
$$

we obtain

$$
K_\gamma = K_\beta \cos^2 \beta + P, \tag{4.14a}
$$

$$
Q_\gamma = K_\beta \sin^2 \beta - P, \tag{4.14b}
$$

where

$$
P = P_\alpha \dot{u} + P_\gamma \dot{\tau}. \tag{4.15}
$$

Here P_α and P_γ are

$$
\frac{1}{2\pi} P_\alpha = m_\alpha r_0 \cos \theta \dot{\theta}, \tag{4.16a}
$$

$$
\frac{1}{2\pi} P_\gamma = -m_\alpha r_0 \sin \theta \dot{\phi}. \tag{4.16b}
$$

From Eqs. (4.14), it also follows that

$$
K_\gamma = K_\beta + Q_\gamma. \tag{4.13d}
$$

This equation represents the conservation of the horizontal linear momentum. As a final expression to be considered, Eqs. (3.9) are rewritten as

$$
p_\gamma = p_\alpha \cos \beta + r_0 \sin \beta \sin \theta \dot{\theta}, \tag{4.17a}
$$

$$
r_\gamma = p_\alpha \sin \beta - r_0 \cos \beta \sin \theta \dot{\phi}. \tag{4.17b}
$$

Substituting Eqs. (4.14)–(4.17) in Eq. (4.10) and using Eq. (4.4), one obtains

$$
\Gamma = a_{\beta}(G_{\alpha \beta} - G_{\alpha \gamma} + K_\beta)p_{\alpha} - a_{\gamma}(G_{\alpha \beta} - G_{\alpha \gamma} + K_\beta)p_{\alpha} - a_{\gamma}^{-1}Q_\gamma r_\gamma. \tag{4.18}
$$

Thus,

$$
\Gamma = a_{\beta} \left((G_{\alpha \beta} + K_\beta)p_{\alpha} - a_{\gamma} \cos^{-1} \beta (G_{\alpha \gamma} + K_\gamma \cos^2 \beta + P_\alpha \dot{u} + P_\gamma \dot{\tau}) \right)
$$

$$
\cdot (p_\beta \cos \beta + r_0 \sin \beta \sin \theta \dot{\theta} + a_{\gamma}^{-1} \sin \beta)
$$

$$
\times (K_\beta \sin^2 \beta - P_\alpha \dot{\theta} - P_\gamma \dot{\phi})(p_\gamma \sin \beta - r_0 \cos \beta \sin \theta \dot{\phi}). \tag{4.19}
$$

Substituting Eq. (4.16a) for P_α and recalling that by definition:

$$
\frac{1}{\mu_0^2} \dot{\theta}, \tag{4.20}
$$

we obtain

$$
\Gamma = a_{\beta} \left((G_{\alpha \beta} - G_{\alpha \gamma}) p_{\alpha} - r_0 \tan \beta \sin \theta (G_{\alpha \gamma} \cdot \dot{u}) - \frac{4\pi r_0 \sin \theta \dot{P}_\mu}{\sin 2\beta} \right). \tag{4.21}
$$

The integration in Eq. (4.9) with respect to X_β and Y_β can be performed without any difficulties. Thus if
\[f(q_x, p_y, j, m | \theta) \]
\[= \int_0^{2\pi} d\phi \ y_{jm}(\theta, \phi) \exp\left[-ia_x r_0 \tan \beta \sin \theta \right] \times \left(G_{q_x, p_y} \cdot \delta \right) + \pi j \sin 2\theta \bigg] , \quad (4.22) \]
the function \(W(\theta) \) becomes
\[W(\theta) = \frac{\delta_{q_x, p_y} - 1}{2\pi (q_x - q_y)} \cdot \frac{\delta_{p_x, p_y} - 1}{2\pi (p_x - p_y)} f(q_x, p_y, j, m | \theta) \]
\[\quad (4.23) \]
or
\[W(\theta) = \delta_{q_x, p_y} \delta_{p_x, p_y} f(q_x, p_y, j, m | \theta) \quad (4.24) \]
where \(q_x, p_x \) were replaced by \(q_x, p_x \), respectively. To evaluate \(f(q_x, p_y, j, m | \theta) \) we have to fix \(G_{q_x, p_y} \). In fact, in the noncorrugated case \(G_{q_x, p_y} \) is not well defined because the unit cell dimensions \(e_x \) and \(e_y \) are not known. Therefore, one assumes either \(e_x \) and \(e_y \) become infinity or \(q_x \) and \(p_x \) become zero. In either case the result is the same, namely:
\[W(\theta) = \delta_{q_x, p_x} \delta_{p_x, p_y} \delta_j f(j, m | \theta), \quad (4.25) \]
where
\[\delta_j f(j, m | \theta) = \int_0^{2\pi} d\phi \ y_{jm}(\theta, \phi) \exp\left[-i\pi j \sin 2\theta \right] . \quad (4.26) \]
Since the spherical harmonics \(y_{jm}(\theta, \phi) \) for any \(j \) and \(m \), including \(j = m = 0 \), are an orthonormal set, the integration over \(\phi \) leads to
\[\delta_j f(j, m | \theta) = 2\pi \delta_{jm} y_{j0}(\theta, \phi) \cos \theta e^{-i\pi j \sin 2\theta} \quad (4.27) \]
Further simplifications are obtained from the relation
\[y_{jm}(\theta, \phi) = \sqrt{\frac{2j + 1}{4\pi}} p_j(\cos \theta) \cos \phi, \quad (4.28) \]
so that
\[\delta_j f(j, m | \theta) = \delta_{jm} \sqrt{\frac{2j + 1}{4\pi}} p_j(\cos \theta) e^{-i\pi j \sin 2\theta} \quad (4.29) \]
Finally the function \(W(\theta) \) becomes
\[W(\theta) = \delta_{q_x, p_y} \delta_{p_x, p_y} \delta_{jm} \delta_{j0} \sqrt{\frac{2j + 1}{4\pi}} p_j(\cos \theta) e^{-i\pi j \sin 2\theta} \quad (4.30) \]
and the physical \(S \) matrix
\[\langle q_x, p_y | n_x, n_y | S \rangle \]
\[= \delta_{q_x, p_y} \delta_{p_x, p_y} \sqrt{\frac{2j + 1}{4\pi}} p_j(\cos \theta) e^{-i\pi j \sin 2\theta} \]
\[\times \delta_{jm} \delta_{j0} \sqrt{\frac{2j + 1}{4\pi}} p_j(\cos \theta) e^{-i\pi j \sin 2\theta} \quad (4.31) \]
The corresponding cross section is given in the form
\[\sigma(n_x | jm, \theta) = \frac{\sqrt{2j + 1}}{k_{n_x}} \delta_{jm} \]
\[\times d(\cos \theta) p_j(\cos \theta) e^{-i\pi j \sin 2\theta} S_{y_{jm}}(\theta) \bigg] ^2, \quad (4.32) \]
where the diffraction quantum numbers were ignored (due to redundancy). Summing over \(m \) and dividing by \((2j + 1) \) one obtains
\[\sigma(n_x | jn, \theta) = \frac{\pi}{k_{n_x}^2} \bigg[\int_{-1}^{+1} d(\cos \theta) p_j(\cos \theta) e^{-i\pi j \sin 2\theta} S_{y_{jm}}(\theta) \bigg] ^2, \quad (4.33) \]
which is the corresponding reactive molecule surface version for the degeneracy averaged cross section.

V. CONCLUSIONS

In this paper a theory is presented which permits calculating transition probabilities and cross sections for reactions taking place between a diatomic molecule \(AB \) and a solid surface \(S \), i.e.,
\[AB + S \rightarrow A + BS. \]
The theory is derived within the framework of the IOSA. Besides presentation of the general expression for a corrugated surface, a more detailed study is performed with respect to a flat noncorrugated surface. For this case the expressions simplify significantly. Here we also find some interesting features.

(i) The final physical \(S \) matrix is independent of the direction of approach of the molecule. Thus the calculations can be done for one given fixed direction of approach, say the perpendicular one, and then easily extended to any other direction. This outcome is probably also related to the fact that the motion of the particles as treated within the IOSA is close to the normal to the surface.

(ii) For given initially rotating molecule the reactive process is not possible unless the \(z \) component of \(j \), namely \(m \), is zero. In other words, a rotating molecule will react if and only if the axis of rotation is parallel to the surface. This is a very interesting result which should be tested using quasiclassical trajectory calculations. It is expected to hold for a realistic system as well and therefore can be considered as a quasiselection rule that governs the reactive process between a molecule and a flat surface. It is expected that it will have important implications for an interaction with a noncorrugated surface as well.

From the expressions derived in this work it is seen that a general quantum IOSA calculation seems to be complicated and time consuming for today's computing facilities. However, there is no doubt that a calculation within the IOSA can be carried out for a flat surface and the results compared with exact classical results. In this way one may be able to estimate the relevance of the IOSA results, as well as study quantum effects such as tunneling, interference effects and resonances.

ACKNOWLEDGMENTS

I would like to thank Professor D. J. Kouri for many conversations on this subject and for his outstanding hospitality during my visit at the University of Houston where most of this research was carried out. I would also like to thank Professor J. Bear for arranging my stay at the University.
